Complex Numbers And Quadratic Equations question 690

Question: Consider $ f(x)=x^{2}-3x+a+\frac{1}{a}, $ $ a\in R-{0}, $ such that $ f(3)>0 $ and $ f(2)\le 0. $ If $ \alpha $ and $ \beta $ are the roots of equation $ f(x)=0 $ then the value of $ {{\alpha }^{2}}+{{\beta }^{2}} $ is equal to

Options:

A) greater than 11

B) less than 5

C) 5

D) depends upon a and a cannot be determined

Show Answer

Answer:

Correct Answer: C

Solution:

$ f(x)=x^{2}-3x+a+\frac{1}{a};f(3)=9-9+a+\frac{1}{a}>0 $
$ \Rightarrow a+\frac{1}{a}>0\Rightarrow a>0 $ $ f(2)=4-6+a+\frac{1}{a}\le 0\Rightarrow \frac{a^{2}-2a+1}{a}\le 0 $
$ \Rightarrow \frac{{{(a-1)}^{2}}}{a}\le 0\Rightarrow a=1 $ Therefore, $ f(x)=x^{2}-3x+2=0 $ has roots 1 and 2.
$ \therefore {{\alpha }^{2}}+{{\beta }^{2}}=5 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें