Complex Numbers And Quadratic Equations question 694

Question: Let $ \lambda \in \mathbf{R} $ If the origin and the non-real roots of $ 2z^{2}+2z+\lambda =0 $ form the three vertices of an equilateral triangle in the arg and plane. Then $ \lambda $ is

Options:

A) 1

B) $ \frac{2}{3} $

C) 2

D) $ -1 $

Show Answer

Answer:

Correct Answer: B

Solution:

For the nonreal roots of the equation $ 2z^{2}+2z+\lambda =0 $ … (i) $ discriminant <0. $ That is $ 4-8\lambda <0\Rightarrow \lambda >\frac{1}{2} $ … (ii) Let the roots of (i) be $ {z_1} \And z_2 $ Then $ {z_1}+z_2=-\frac{2}{2}=-1,z_1z_2=\frac{\lambda }{2} $ $ {z_1}andz_2 $ with origin form equilateral triangle if $ {z^{2}}+z_2^{2}-z_1z_2=0 $
$ \Rightarrow {{(z_1+z_2)}^{2}}=3z_1z_2 $
$ \Rightarrow {{(-1)}^{2}}=3\frac{\lambda }{2}\Rightarrow \lambda =\frac{2}{3} $ $ \lambda =\frac{2}{3}( >\frac{1}{2} ) $ satisfies the condition (ii). Hence it is the required result.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें