Complex Numbers And Quadratic Equations question 695

Question: If $ \alpha ,\beta $ be the roots of the equation $ x^{2}-px+q=0 $ and $ {\alpha_1},{\beta_1} $ the roots of the equation $ x^{2}-qx+p=0, $ then the equation whose roots are $ \frac{1}{{\alpha_1}\beta }+\frac{1}{\alpha {\beta_1}} $ and $ \frac{1}{\alpha {\alpha_1}}+\frac{1}{\beta {\beta_1}} $ is

Options:

A) $ pqx^{2}-pqx+p^{2}+q^{2}+4pq=0 $

B) $ p^{2}q^{2}x^{2}-p^{2}q^{2}x+p^{3}+q^{3}-4pq=0 $

C) $ p^{3}q^{3}x^{2}-p^{3}q^{3}x+p^{4}+q^{4}-4p^{2}q^{2}=0 $

D) $ (p+q)x^{2}-(p+q)x+p^{2}+q^{2}+pq=0 $

Show Answer

Answer:

Correct Answer: B

Solution:

Here, $ \alpha +\beta =p, \alpha \beta =q $ $ {\alpha_1}+{\beta_1} =p,{\alpha_1}{\beta_1}=p $ Sum of given roots $ =( \frac{1}{{\alpha_1}\beta }+\frac{1}{\alpha {\beta_1}} )+( \frac{1}{\alpha {\alpha_1}}+\frac{1}{\beta {\beta_1}} ) $ $ =\frac{\alpha {\beta_1}+{\alpha_1}\beta +\beta {\beta_1}+\alpha {\alpha_1}}{\alpha \beta {\alpha_1}{\beta_1}} $ Product of given roots $ =( \frac{1}{{\alpha_1}\beta }+\frac{1}{\alpha \beta 1} )( \frac{1}{\alpha {\alpha_1}}+\frac{1}{\beta {\beta_1}} ) $ $ =-\frac{(\alpha {\beta_1}+{\alpha_1}\beta )(\alpha {\alpha_1}+\beta {\beta_1})}{{{\alpha }^{2}}{{\beta }^{2}}\alpha _1^{2}\beta _1^{2}} $ $ =\frac{\alpha \beta (\alpha _1^{2}+\beta _1^{2})+{\alpha_1}{\beta_1}({{\alpha }^{2}}+{{\beta }^{2}})}{{{\alpha }^{2}}{{\beta }^{2}}\alpha _1^{2}\beta _1^{2}} $ $ =\frac{\alpha \beta [ {{({\alpha_1}+{\beta_1})}^{2}}-2{\alpha_1}{\beta_1} ]+{\alpha_1}{\beta_1}[ {{(\alpha +\beta )}^{2}}-2\alpha \beta ]}{{{(\alpha \beta )}^{2}}{{({\alpha_1}{\beta_1})}^{2}}} $ $ =\frac{q(q^{2}-2p)+p(p^{2}-2q)}{q^{2}p^{2}}=\frac{p^{3}+q^{3}-4pq}{p^{2}q^{2}} $ Hence, the required equation is $ ( p^{2}x^{2} )x^{2}-( p^{2}q^{2} )x+p^{3} +q^{3}-4pq = 0 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें