Complex Numbers And Quadratic Equations question 702
Question: If $ z=1+i\tan \alpha ( -\pi <\alpha <-\frac{\pi }{2} ), $ then polar form of the complex number z is:
Options:
A) $ \frac{1}{\cos \alpha }(\cos \alpha +i\sin \alpha ) $
B) $ \frac{1}{-\cos \alpha }[\cos (\pi +\alpha )+i\sin (\pi +\alpha ) $
C) $ \frac{1}{\cos \alpha }[\cos (2\pi +\alpha )+i\sin (2\pi +\alpha )] $
D) None of these
Show Answer
Answer:
Correct Answer: B
Solution:
$ z = 1 + i tan \alpha  = r ( cos\theta +i sin\theta  ) $
$ \Rightarrow r cos \theta  = 1, r sin \theta  = tan a \Rightarrow  r^{2} = sec^{2}\alpha  $
$ \Rightarrow r=| \sec \alpha  |=\frac{1}{| \cos \alpha  |} $  Since,  $ - \pi  < \alpha  <-\frac{\pi }{2} $
$ \Rightarrow \cos  \alpha  < 0 \Rightarrow  | cos \alpha  | =-cos\alpha  $
$ \therefore r=\frac{1}{-\cos \alpha }. $  Further, we get  $ \cos  \theta  = - cos \alpha  = cos ( \pi  + \alpha  ) $  Now,  $ -\pi <\alpha <-\frac{\pi }{2}\Rightarrow \pi -\pi <\pi +\alpha <\pi -\frac{\pi }{2} $
$ \Rightarrow  0<\pi +\alpha <\frac{\pi }{2} $      [Converted to principal value]
$ \therefore  cos \theta  = cos ( \pi  + a ) \Rightarrow  \theta =\pi +\alpha  $  Hence  $ z = \frac{1}{-\cos \alpha }[ cos ( \pi  + \alpha  ) + i sin( \pi  + \alpha  ) ] $
 BETA
  BETA 
             
             
           
           
           
          