Complex Numbers And Quadratic Equations question 705

Question: The roots of the equation $ abc^{2}x^{2}+3a^{2}cx+b^{2}cx-6a^{2}-ab+2b^{2}=0 $ are

Options:

A) non real

B) rational if a, b, c are rational

C) irrational if a, b, c are rational

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

The equation is $ {abc^{2}}x^{2}+( 3a^{2}c+b^{2}c )x-6a^{2}-ab+2b^{2}=0 $ Discriminant $ D= {{( 3a^{2}+b^{2} )}^{2}}c^{2}-4abc^{2}( -6a^{2}-ab+2b^{2} ) $ $ = 9a^{4}c^{2} + b^{4}c^{2} + 6a^{2}b^{2}c^{2} + 24a^{3}bc^{2} $ $ +4a^{2}b^{2}c^{2}-8ab^{3}c^{2} $ $ = 9a^{4}c^{2} +16a^{2}b^{2}c^{2} + b^{4}c^{2} + 24a^{3}bc^{2} $ $ -8ab^{3}c^{2}-6a^{2}b^{2}c^{2} $ $ = {{( 3a^{2}c+4abc -b^{2}c )}^{2}} $ Since, the discriminant is a prefect square, therefore the roots are rational provided a, b, c, are rational.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें