Complex Numbers And Quadratic Equations question 726

Question: The number of real solutions of the equation $ |x{{|}^{2}} $ - $ 3|x|+2=0 $ are [IIT 1982, 89; MP PET 1997; DCE 2002; AMU 2000; UPSEAT 1999; AIEEE 2003]

Options:

A) 1

B) 2

C) 3

D) 4

Show Answer

Answer:

Correct Answer: D

Solution:

Given $ |x{{|}^{2}}-3|x|+2=0 $ Here we consider two cases $ viz.x<0 $ and $ x>0 $ Case I: $ x<0 $ This gives $ x^{2}+3x+2=0 $
Þ $ (x+2)(x+1)=0\Rightarrow x=-2,-1 $ Also $ x=-1,-2 $ satisfy $ x<0, $ so $ x=-1 $ , - 2 is solution in this case. Case II: $ x>0 $ . This gives $ x^{2}-3x+2=0 $
Þ $ (x-2)(x-1)=0\Rightarrow x=2,1 $ , so $ x=2 $ , 1 is solution in this case. Hence the number of solutions are four i.e. $ x=-1,1,2,-2 $ Aliter: $ |x{{|}^{2}}-3|x|+2=0 $
Þ $ (|x|-1)(|x|-2)=0 $
Þ $ |x|=1 $ and $ |x|=2 $ Þ $ x=\pm 1,x=\pm 2 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें