Complex Numbers And Quadratic Equations question 727
Question: The number of real roots of the equation $ {e^{\sin x}}-{e^{-\sin x}}-4 $ $ =0 $ are [IIT 1982; Pb. CET 2000]
Options:
A) 1
B) 2
C) Infinite
D) None
Show Answer
Answer:
Correct Answer: D
Solution:
Given equation  $ {e^{\sin x}}-{e^{-\sin x}}-4=0 $  Let  $ {e^{\sin x}}=y $ , then given equation can be written as  $ y^{2}-4y-1=0 $
Þ  $ y=2\pm \sqrt{5} $  But the value of   $ y={e^{\sin x}} $  is always positive, so  $ y=2+\sqrt{5}(\because 2<\sqrt{5}) $
Þ  $ {\log_{e}}y={\log_{e}}(2+\sqrt{5}) $
Þ $ \sin x={\log_{e}}(2+\sqrt{5})>1 $  which is impossible,  since  $ \sin x $  cannot be greater than 1. Hence we cannot find any real value of x which satisfies the given equation.
 BETA
  BETA 
             
             
           
           
           
          