Complex Numbers And Quadratic Equations question 728

Question: The number of real solutions of the equation | $ x^{2} $ + 4x + 3| + 2x + 5 = 0 are [IIT 1988]

Options:

A) 1

B) 2

C) 3

D) 4

Show Answer

Answer:

Correct Answer: B

Solution:

Here two cases arise viz. Case I : $ x^{2}+4x+3>0 $ This gives $ x^{2}+4x+3+2x+5=0 $
Þ $ x^{2}+6x+8=0 $ Þ $ (x+2)(x+4)=0 $
Þ $ x=-2,-4 $ $ x=-2 $ is not satisfying the condition $ x^{2}+4x+3>0 $ , so $ x=-4 $ is the only solution of the given equation. Case II : $ x^{2}+4x+3<0 $ This gives - $ (x^{2}+4x+3)+2x+5=0 $
Þ $ -x^{2}-2x+2=0\Rightarrow x^{2}+2x-2=0 $
Þ $ (x+1+\sqrt{3})(x+1-\sqrt{3})=0 $
Þ $ x=-1+\sqrt{3},-1-\sqrt{3} $ Hence $ x=-(1+\sqrt{3}) $ satisfy the given condition $ x^{2}+4x+3<0 $ , while $ x=-1+\sqrt{3} $ is not satisfying the condition. Thus number of real solutions are two.