Complex Numbers And Quadratic Equations question 728

Question: The number of real solutions of the equation | $ x^{2} $ + 4x + 3| + 2x + 5 = 0 are [IIT 1988]

Options:

A) 1

B) 2

C) 3

D) 4

Show Answer

Answer:

Correct Answer: B

Solution:

Here two cases arise viz. Case I : $ x^{2}+4x+3>0 $ This gives $ x^{2}+4x+3+2x+5=0 $
Þ $ x^{2}+6x+8=0 $ Þ $ (x+2)(x+4)=0 $
Þ $ x=-2,-4 $ $ x=-2 $ is not satisfying the condition $ x^{2}+4x+3>0 $ , so $ x=-4 $ is the only solution of the given equation. Case II : $ x^{2}+4x+3<0 $ This gives - $ (x^{2}+4x+3)+2x+5=0 $
Þ $ -x^{2}-2x+2=0\Rightarrow x^{2}+2x-2=0 $
Þ $ (x+1+\sqrt{3})(x+1-\sqrt{3})=0 $
Þ $ x=-1+\sqrt{3},-1-\sqrt{3} $ Hence $ x=-(1+\sqrt{3}) $ satisfy the given condition $ x^{2}+4x+3<0 $ , while $ x=-1+\sqrt{3} $ is not satisfying the condition. Thus number of real solutions are two.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें