Complex Numbers And Quadratic Equations question 761

Question: If the roots of the equation $ (p^{2}+q^{2})x^{2} $ $ -2q(p+r)x $ + $ (q^{2}+r^{2})=0 $ be real and equal, then $ p,q,r $ will be in

Options:

A) A.P.

B) G.P.

C) H.P.

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Given equation is $ (p^{2}+q^{2})x^{2}-2q(p+r)x+(q^{2}+r^{2})=0 $ Roots are real and equal, then $ 4q^{2}{{(p+r)}^{2}}-4(p^{2}+q^{2})(q^{2}+r^{2})=0 $
Þ $ q^{2}(p^{2}+r^{2}+2pr)-(p^{2}q^{2}+p^{2}r^{2}+q^{4}+q^{2}r^{2})=0 $
Þ $ q^{2}p^{2}+q^{2}r^{2}+2pq^{2}r-p^{2}q^{2}-p^{2}r^{2}-q^{4}-q^{2}r^{2}=0 $
Þ $ 2pq^{2}r-p^{2}r^{2}-q^{4}=0 $ Þ $ {{(q^{2}-pr)}^{2}}=0 $ Hence $ q^{2}=pr $ . Thus p, q, r in G.P.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें