Complex Numbers And Quadratic Equations question 766

Question: If one of the roots of the equation $ x^{2}+ax+b=0 $ and $ x^{2}+bx+a=0 $ is coincident, then the numerical value of $ (a+b) $ is [IIT 1986; RPET 1992; EAMCET 2002]

Options:

A) 0

B) - 1

C) 2

D) 5

Show Answer

Answer:

Correct Answer: B

Solution:

If $ \alpha $ is the coincident root, then $ {{\alpha }^{2}}+a\alpha +b=0 $ and $ {{\alpha }^{2}}+b\alpha +a=0 $
Þ $ \frac{{{\alpha }^{2}}}{a^{2}-b^{2}}=\frac{\alpha }{b-a}=\frac{1}{b-a} $
Þ $ {{\alpha }^{2}}=-(a+b);\alpha =1\Rightarrow -(a+b)=1 $ Þ $ (a+b)=-1 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें