Complex Numbers And Quadratic Equations question 772

Question: If the roots of the equation $ x^{2}-8x+(a^{2}-6a)=0 $ are real, then [RPET 1987, 97; MP PET 1999]

Options:

A) $ -2<a<8 $

B) $ 2<a<8 $

C) $ -2\le a\le 8 $

D) $ 2\le a\le 8 $

Show Answer

Answer:

Correct Answer: C

Solution:

Roots of $ x^{2}-8x+(a^{2}-6a)=0 $ are real. So $ D\ge 0 $
Þ $ 64-4(a^{2}-6a)\ge 0 $ Þ $ 16-a^{2}+6a\ge 0 $
Þ $ a^{2}-6a-16\le 0 $ Þ $ (a-8)(a+2)\le 0 $ Now we have two cases: Case I : $ (a-8)\le 0 $ and $ (a+2)\ge 0 $
Þ $ a\le 8 $ and $ a\ge -2 $ Case II : $ (a-8)\ge 0 $ and $ (a+2)\le 0 $
Þ $ a\ge 8 $ and $ a\le -2 $ but it is impossible Therefore, we get $ -2\le a\le 8 $ Aliter : Students should note that the expression $ (x-a)(x-b){a<b} $ will be less than or equal to zero if $ x\in [a,b] $ or otherwise $ x\notin [a,b] $ . Therefore $ (a-8)(a+2)\le 0 $ i.e., $ {a-(-2)}(a-8)\le 0\Rightarrow a\in [-2,\ 8] $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें