Complex Numbers And Quadratic Equations question 772
Question: If the roots of the equation $ x^{2}-8x+(a^{2}-6a)=0 $ are real, then [RPET 1987, 97; MP PET 1999]
Options:
A) $ -2<a<8 $
B) $ 2<a<8 $
C) $ -2\le a\le 8 $
D) $ 2\le a\le 8 $
Show Answer
Answer:
Correct Answer: C
Solution:
Roots of  $ x^{2}-8x+(a^{2}-6a)=0 $  are real. So $ D\ge 0 $
Þ   $ 64-4(a^{2}-6a)\ge 0 $
Þ  $ 16-a^{2}+6a\ge 0 $
Þ   $ a^{2}-6a-16\le 0 $
Þ  $ (a-8)(a+2)\le 0 $  Now we have two cases: Case I :  $ (a-8)\le 0 $ and  $ (a+2)\ge 0 $
Þ  $ a\le 8 $ and  $ a\ge -2 $  Case II :  $ (a-8)\ge 0 $ and  $ (a+2)\le 0 $
Þ  $ a\ge 8 $ and  $ a\le -2 $ but it is impossible Therefore, we get  $ -2\le a\le 8 $  Aliter : Students should note that the expression  $ (x-a)(x-b){a<b} $  will be less than or equal to zero if  $ x\in [a,b] $  or otherwise  $ x\notin [a,b] $ . Therefore $ (a-8)(a+2)\le 0 $  i.e.,  $ {a-(-2)}(a-8)\le 0\Rightarrow a\in [-2,\ 8] $ .
 BETA
  BETA 
             
             
           
           
           
          