Complex Numbers And Quadratic Equations question 774

Question: If the roots of the given equation $ (\cos p-1)x^{2}+(\cos p)x+\sin p=0 $ are real, then [IIT 1990; RPET 1995]

Options:

A) $ p\in (-\pi ,0) $

B) $ p\in ( -\frac{\pi }{2},\frac{\pi }{2} ) $

C) $ p\in (0,\pi ) $

D) $ p\in (0,2\pi ) $

Show Answer

Answer:

Correct Answer: C

Solution:

Given equation $ (\cos p-1)x^{2}+(\cos p)x+\sin p=0 $ Its discriminant $ D\ge 0 $ since roots are real Þ $ {{\cos }^{2}}p-4(\cos p-1)\sin p\ge 0 $
Þ $ {{\cos }^{2}}p-4\cos p\sin p+4\sin p\ge 0 $
Þ $ {{(\cos p-2\sin p)}^{2}}-4{{\sin }^{2}}p+4\sin p\ge 0 $
Þ $ {{(\cos p-2\sin p)}^{2}}+4\sin p(1-\sin p)\ge 0 $ …….(i) Now $ (1-\sin p)\ge 0 $ for all real p, $ \sin p>0 $ for $ 0<p<\pi . $ Therefore $ 4\sin p(1-\sin p)\ge 0 $ when $ 0<p<\pi $ or $ p\in (0,\pi ) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें