Complex Numbers And Quadratic Equations question 78

Question: If $ |z|=1,(z\ne -1) $ and $ z=x+iy, $ then $ ( \frac{z-1}{z+1} ) $ is [RPET 1997]

Options:

A) Purely real

B) Purely imaginary

C) Zero

D) Undefined

Show Answer

Answer:

Correct Answer: B

Solution:

$ z=x+iy\Rightarrow |z{{|}^{2}}=x^{2}+y^{2}=1 $ …..(i) Now, $ ( \frac{z-1}{z+1} )=\frac{(x-1)+iy}{(x+1)+iy}\times \frac{(x+1)-iy}{(x+1)-iy} $ $ =\frac{(x^{2}+y^{2}-1)+2iy}{{{(x+1)}^{2}}+y^{2}} $ $ =\frac{2iy}{{{(x+1)}^{2}}+y^{2}} $ [by equation (i)] Hence, $ ( \frac{z-1}{z+1} ) $ is purely imaginary.