Complex Numbers And Quadratic Equations question 799

Question: If $ \sin A,\sin B,\cos A $ are in G.P., then roots of $ x^{2}+2x\cot B+1=0 $ are always [Orissa JEE 2005]

Options:

A) Real

B) Imaginary

C) Greater than 1

D) Equal

Show Answer

Answer:

Correct Answer: A

Solution:

Given $ {{\sin }^{2}}B=\sin A\cos A $
Þ $ \cos 2B=1-\sin 2A\ge 0 $ Now for $ x^{2}+2x\cot B+1=0 $ Consider $ D=4({{\cot }^{2}}B-1)=4\cos 2B\cos e{c^{2}}B\ge 0 $ Hence, roots are always real.