Complex Numbers And Quadratic Equations question 800

Question: The values of ‘a’ and ‘b’ for which equation $ x^{4}-4x^{3}+ax^{2}+bx+1=0 $ have four real roots [DCE 2005]

Options:

A) - 6, - 4

B) - 6, 5

C) - 6, 4

D) 6, - 4

Show Answer

Answer:

Correct Answer: D

Solution:

Let for real roots are $ \alpha ,\beta ,\gamma ,\delta $ then equation is $ (x-\alpha )(x-\beta )(x-\gamma )(x-\delta )=0 $ $ x^{4}-(\alpha +\beta +\gamma +\delta )x^{3}+(\alpha \beta +\beta \gamma +\gamma \delta $ $ +\alpha \delta +\beta \delta +\alpha \gamma )x^{2}-(\alpha \beta \gamma +\beta \gamma \delta $ $ +\alpha \beta \delta +\alpha \gamma \delta )x+\alpha \beta \gamma \delta =0 $ $ x^{4}-\sum \alpha .x^{3}+\sum \alpha \beta .x^{2}-\sum \alpha \beta \gamma .x+\alpha \beta \gamma \delta =0 $ on comparing with $ x^{4}-4x^{3}+ax^{2}+bx+1=0 $ $ \sum \alpha =4,\sum \alpha \beta =a $ $ \sum \alpha \beta \gamma =-b,\alpha \beta \gamma \delta =1 $ For real roots, A.M. of roots $ \ge $ G.M. of roots $ \frac{1}{4}(\sum \alpha )\ge {{(\alpha \beta \gamma \delta )}^{1/4}} $ ; $ \sum \alpha =4 $
$ \therefore $ $ \frac{1}{4}\sum \alpha =\frac{1}{4}\times 4=1 $ $ {{(\alpha \beta \gamma \delta )}^{1/4}}=1 $ Þ $ \alpha \beta \gamma \delta =1 $ $ \Sigma \alpha =4 $ and $ \alpha \beta \gamma \delta =1 $
$ \therefore $ $ \alpha =\beta =\gamma =\delta $ = 1 Now, $ \sum \alpha \beta =a $
$ \therefore a=\alpha \beta +\beta \gamma +\gamma \delta +\alpha \delta +\beta \delta +\alpha \gamma $ $ =1\times 1+1\times 1+1\times 1+1\times 1+1\times 1+1\times 1 $ = 6 $ -b=\alpha \beta \gamma +\alpha \beta \delta +\alpha \gamma \delta +\beta \gamma \delta $ $ =1\times 1\times 1+1\times 1\times 1+1\times 1\times 1+1\times 1\times 1 $ $ ={{(1)}^{3}}+{{(1)}^{3}}+{{(1)}^{3}}+{{(1)}^{3}}=1+1+1+1=4 $
$ \therefore b=-4 $ ;
$ \therefore a=6 $ and $ b=-4 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें