Complex Numbers And Quadratic Equations question 801

Question: The number of real values of x for which the equality $ | 3x^{2}+12x+6 |=5x+16 $ holds good is [AMU 1999]

Options:

A) 4

B) 3

C) 2

D) 1

Show Answer

Answer:

Correct Answer: C

Solution:

Equation is $ |3x^{2}+12x+6|=5x+16 $ …….(i) when $ 3x^{2}+12x+6\ge 0 $ $ \Leftrightarrow x^{2}+4x\ge -2 $ $ \Leftrightarrow |x+2{{|}^{2}}\ge 4-2\Leftrightarrow |x+2|\ge {{(\sqrt{2})}^{2}} $ $ \Leftrightarrow x+2\le -\sqrt{2} $ or $ x+2\ge \sqrt{2} $ ….(ii) Then (i) becomes $ 3x^{2}+12x+6=5x+16 $ $ \Leftrightarrow 3x^{2}+7x-10=0\Rightarrow x=1,-\frac{10}{3} $ But $ x=-\frac{10}{3} $ does not satisfy (ii). When $ 3x^{2}+12x+6<0 $
$ \Rightarrow x^{2}+4x<-2 $
Þ $ |x+2|\le \sqrt{2} $
$ \Rightarrow -\sqrt{2}-2\le x\le -2+\sqrt{2} $ …….(iii) Then (i) becomes
$ \Rightarrow 3x^{2}+12x+6=-(5x+16) $
$ \Rightarrow 3x^{2}+17x+22=0\Rightarrow x=-2,-\frac{11}{3} $ But $ x=-\frac{11}{3} $ does not satisfy (iii). So, 1 and - 2 are the only solutions.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें