Complex Numbers And Quadratic Equations question 804

Question: The number of roots of the equation $ \log (-2x) $ $ =2\log (x+1) $ are [AMU 2001]

Options:

A) 3

B) 2

C) 1

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Given, $ \log (-2x)=2\log (x+1) $
$ \Rightarrow -2x={{(x+1)}^{2}} $
$ \Rightarrow x^{2}+4x+1=0 $
Þ $ x=\frac{-4\pm \sqrt{16-4}}{2} $
Þ $ x=\frac{-4\pm \sqrt{12}}{2} $
Þ $ x=-2\pm \sqrt{3} $ Þ $ x=(-2+\sqrt{3}),(-2-\sqrt{3}) $ .