Complex Numbers And Quadratic Equations question 805

Question: The set of all real numbers x for which $ x^{2}-|x+2|+x>0, $ is [IIT Screening 2002]

Options:

A) $ (-\infty ,-2)\cup (2,\infty ) $

B) $ (-\infty ,-\sqrt{2})\cup (\sqrt{2},\infty ) $

C) $ (-\infty ,-1)\cup (1,\infty ) $

D) $ (\sqrt{2},\infty ) $

Show Answer

Answer:

Correct Answer: B

Solution:

Case I: When $ x+2\ge 0 $ i.e. $ x\ge -2, $ Then given inequality becomes $ x^{2}-(x+2)+x>0 $
Þ $ x^{2}-2>0\Rightarrow |x|>\sqrt{2} $
Þ $ x<-\sqrt{2} $ or $ x>\sqrt{2} $ As $ x\ge -2, $ therefore, in this case the part of the solution set is $ [-2,-\sqrt{2})\cup (\sqrt{2},\infty ). $ Case II: When $ x+2\le 0 $ i.e. $ x\le -2, $ Then given inequality becomes $ x^{2}+(x+2)+x>0 $
$ \Rightarrow x^{2}+2x+2>0 $
$ \Rightarrow {{(x+1)}^{2}}+1>0, $ which is true for all real x Hence, the part of the solution set in this case is $ (-\infty ,-2] $ . Combining the two cases, the solution set is $ (-\infty ,-2)\cup ([-2,-\sqrt{2}]\cup (\sqrt{2},\infty ) $ $ =(-\infty ,-\sqrt{2})\cup (\sqrt{2},\infty ). $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें