Complex Numbers And Quadratic Equations question 809

Question: If the sum of the two roots of the equation $ 4x^{3}+16x^{2}-9x-36=0 $ is zero, then the roots are [MP PET 1986]

Options:

A) 1, 2 -2

B) $ -2,\frac{2}{3},-\frac{2}{3} $

C) $ -3,\frac{3}{2},-\frac{3}{2} $

D) $ -4,\frac{3}{2},-\frac{3}{2} $

Show Answer

Answer:

Correct Answer: D

Solution:

Given equation $ 4x^{3}+16x^{2}-9x-36=0 $ , Putting $ x=-4 $ Þ $ -4\times 64+256+36-36=0 $ Hence $ x=-4 $ is a root of the equation Now reduced equation is $ 4x^{2}(x+4)-9(x+4)=0 $
Þ $ (x+4)(4x^{2}-9)=0 $ Þ $ x=-4,x=\pm \frac{3}{2} $ Thus roots are $ -4,-\frac{3}{2},\frac{3}{2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें