Complex Numbers And Quadratic Equations question 81

Question: A real value of x will satisfy the equation $ ( \frac{3-4ix}{3+4ix} )= $ $ \alpha -i\beta (\alpha ,\beta \text{real),} $ if [Orissa JEE 2003]

Options:

A) $ {{\alpha }^{2}}-{{\beta }^{2}}=-1 $

B) $ {{\alpha }^{2}}-{{\beta }^{2}}=1 $

C) $ {{\alpha }^{2}}+{{\beta }^{2}}=1 $

D) $ {{\alpha }^{2}}-{{\beta }^{2}}=2 $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \alpha -i\beta =\frac{3-4xi}{3+4xi} $ . Taking modulus and squaring on both sides, $ {{\alpha }^{2}}+{{\beta }^{2}}=1 $ .