Complex Numbers And Quadratic Equations question 812
Question: If $ a,b,c $ are real and $ x^{3}-3b^{2}x+2c^{3} $ is divisible by $ x-a $ and $ x-b $ , then
Options:
A) $ a=-b=-c $
B) $ a=2b=2c $
C) $ a=b=c $ , $ a=-2b=-2c $
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
As  $ f(x)=x^{3}-3b^{2}x+2c^{3} $  is divisible by  $ x-a $  and  $ x-b $ , therefore           $ f(a)=0\Rightarrow a^{3}-3b^{2}a+2c^{3}=0 $  …..(i) and   $ f(b)=0 $
Þ $ b^{3}-3b^{3}+2c^{3}=0 $  …..(ii) From (ii),   $ b=c $  From (i),  $ a^{3}-3ab^{2}+2b^{3}=0 $ (Putting  $ b=c $ )
$ \Rightarrow (a-b)(a^{2}+ab-2b^{2})=0 $
$ \Rightarrow  $  $ a=b $  or  $ a^{2}+ab=2b $  Thus  $ a=b=c $  or  $ a^{2}+ab=2b^{2} $  and  $ b=c $   $ a^{2}+ab=2b^{2} $ is satisfied by  $ a=-2b $ . But  $ b=c $ . \ $ a^{2}+ab-2b^{2} $  and  $ b=c $  is equivalent to  $ a=-2b=-2c $
 BETA
  BETA 
             
             
           
           
           
          