Complex Numbers And Quadratic Equations question 814

Question: If $ \alpha ,\beta ,\gamma $ are the roots of the equation $ x^{3}+4x+1=0, $ then $ {{(\alpha +\beta )}^{-1}}+{{(\beta +\gamma )}^{-1}}+{{(\gamma +\alpha )}^{-1}}= $ [EAMCET 2003]

Options:

A) 2

B) 3

C) 4

D) 5

Show Answer

Answer:

Correct Answer: C

Solution:

Ifa, b, g are the roots of the equation. $ x^{3}-px^{2}+qx-r=0 $
$ \therefore {{(\alpha +\beta )}^{-1}}+{{(\beta +\gamma )}^{-1}}+{{(\gamma +\alpha )}^{-1}}=\frac{p^{2}+q}{pq-r} $ Given, $ p=0,q=4,r=-1 $
Þ $ \frac{p^{2}+q}{pq-r}=\frac{0+4}{0+1}=4 $ .