Complex Numbers And Quadratic Equations question 822
Question: $ \sqrt{-8-6i}= $ [Roorkee 1979; RPET 1992]
Options:
A) $ 1\pm 3i $
B) $ \pm (1-3i) $
C) $ \pm (1+3i) $
D) $ \pm (3-i) $
Show Answer
Answer:
Correct Answer: B
Solution:
Given that  $ \sqrt{-8-6i}=x+iy=z $
Þ  $ -8-6i={{(x+iy)}^{2}} $
$ \therefore x^{2}-y^{2}=-8 $     …..(i)  and   $ 2xy=-6 $       …..(ii) Now  $ x^{2}+y^{2}=\sqrt{64+36}=\pm 10 $                   …..(iii) From (i) and (iii), we get   $ x=\pm 1 $ and  $ y=\pm 3 $  Hence  $ z=\pm (1-3i) $  Trick: Since  $ {{{\pm (1-3i)}}^{2}}=-8-6i $
 BETA
  BETA 
             
             
           
           
           
          