Complex Numbers And Quadratic Equations question 826

Question: If $ \sqrt{a+ib}=x+iy $ , then possible value of $ \sqrt{a-ib} $ is [Kerala (Engg.) 2002]

Options:

A) $ x^{2}+y^{2} $

B) $ \sqrt{x^{2}+y^{2}} $

C) $ x+iy $

D) $ x-iy $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \sqrt{a+ib}=x+yi\Rightarrow {{( \sqrt{a+ib} )}^{2}}={{(x+yi)}^{2}} $
$ \Rightarrow a=x^{2}-y^{2},b=2xy $ and hence $ \sqrt{a-ib}=\sqrt{x^{2}-y^{2}-2xyi} $ $ =\sqrt{{{(x-yi)}^{2}}} $ $ =x-iy $ Note: In the question, it should have been given that $ a,b,x,y\in R. $