Complex Numbers And Quadratic Equations question 827

The number of non-zero integral solutions of the equation $ |1 - i|^{x} = 2^{x} $ is

Options:

A) Finite

1

2

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

Since $ 1-i=\sqrt{2}{ \cos \frac{\pi }{4}-i\sin \frac{\pi }{4} },|1-i|=\sqrt{2} $
$ \therefore $ $ |1-i{{|}^{x}}=2^{x} $ Þ $ {{(\sqrt{2})}^{x}}=2^{\frac{x}{2}} $ Þ $ 2^{x/2} = 2^{x} $ Þ $ \frac{x}{2}=x $ Þ $ x=0 $ Therefore, the number of non-zero integral solutions is nil or zero.



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index