Complex Numbers And Quadratic Equations question 83

Question: If $ z_1 $ and $ z_2 $ are two non-zero complex numbers such that $ |z_1+z_2|=|z_1|+|z_2|, $ then arg $ (z_1)- $ arg $ (z_2) $ is equal to [IIT 1979, 1987; EAMCET 1986; RPET 1997; MP PET 2001; AIEEE 2005]

Options:

A) $ -\pi $

B) $ -\frac{\pi }{2} $

C) $ \frac{\pi }{2} $

D) 0

Show Answer

Answer:

Correct Answer: D

Solution:

Let $ z_1=r_1 $ $ (\cos {\theta_1}+i\sin {\theta_1}) $ , $ z_2=r_2 $ $ (\cos {\theta_2}+i\sin {\theta_2}) $
$ \therefore $ $ |z_1+z_2|=[{{(r_1\cos {\theta_1}+r_2\cos {\theta_2})}^{2}} $ $ +{{(r_2\sin {\theta_1}+r_2\sin {\theta_2})}^{2}}{{]}^{1/2}} $ $ ={{[r_1^{2}+r_2^{2}+2r_1r_2\cos ({\theta_1}-{\theta_2})]}^{1/2}}={{[{{(r_1+r_2)}^{2}}]}^{1/2}} $ $ arg(z_2)=\theta $ Therefore $ \cos ({\theta_1}-{\theta_2})=1\Rightarrow {\theta_1}-{\theta_2}=0\Rightarrow {\theta_1}={\theta_2} $ Thus arg $ (z_1)-arg(z_2)=0 $ . Trick: $ |z_1+z_2|=|z_1|+|z_2|\Rightarrow z_1,z_2 $ lies on same straight line.
$ \therefore argz_1=argz_2\Rightarrow argz_1-argz_2=0 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें