Complex Numbers And Quadratic Equations question 85

Question: Argument and modulus of $ \frac{1+i}{1-i} $ are respectively [RPET 1984; MP PET 1987; Karnataka CET 2001]

Options:

A) $ \frac{-\pi }{2} $ and 1

B) $ \frac{\pi }{2} $ and $ \sqrt{2} $

C) 0 and $ \sqrt{2} $

D) $ \frac{\pi }{2} $ and 1

Show Answer

Answer:

Correct Answer: D

Solution:

$ \frac{1+i}{1-i}=\frac{1+i}{1-i}\times \frac{1+i}{1+i}=\frac{{{(1+i)}^{2}}}{2} $ Now $ 1+i=r(\cos \theta +i\sin \theta )\Rightarrow r\cos \theta =1,r\sin \theta =1 $
Þ $ r=\sqrt{2},\theta =\pi /4 $
$ \therefore $ $ 1+i=\sqrt{2}( \cos \frac{\pi }{4}+i\sin \frac{\pi }{4} ) $
$ \Rightarrow $ $ \frac{1}{2}{{(1+i)}^{2}}=\frac{1}{2}.2{{( \cos \frac{\pi }{4}+i\sin \frac{\pi }{4} )}^{2}} $ By De Moivre’s Theorem, $ ( \cos \frac{\pi }{2}+i\sin \frac{\pi }{2} ) $ Hence the amplitude is $ \frac{\pi }{2} $ and modulus is 1. Trick: $ arg( \frac{1+i}{1-i} )=arg(1+i)-arg(1-i) $ $ =45^{o}-(-45^{o})=90^{o} $ $ | \frac{1+i}{1-i} |=\frac{| 1+i |}{| 1-i |}=\frac{\sqrt{2}}{\sqrt{2}}=1 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें