Conic Sections Question 1

The centre of the conic represented by the equation $ 2x^{2}-72xy+23y^{2}-4x-28y-48=0 $ is not defined for a general conic section with an xy-term; the centre requires rotation of axes to determine.

Options:

A) $ ( \frac{11}{15},\ \frac{2}{25} ) $

B) $ ( \frac{2}{25},\ \frac{11}{25} ) $

C) $ ( \frac{11}{15},\ -\frac{2}{25} ) $

D) $ ( -\frac{11}{25},\ -\frac{2}{25} ) $

Show Answer

Answer:

Correct Answer: A

Solution:

Centre of conic is $ ( \frac{hf-bg}{ab-h^{2}},\frac{af-gh}{ab-h^{2}} ) $

$ =\frac{(-36)(-14)-(23)(-2)}{(2)(23)-{{(36)}^{2}}},\ \frac{(-2)(-36)-(2)(-14)}{(2)(23)-{{(-36)}^{2}}} $

$ =( -\frac{11}{25},-\frac{2}{25} ) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें