Conic Sections Question 101

Question: The eccentricity of an ellipse, with its centre at the origin, is $ \frac{1}{2} $ . If one of the directrices is $ x=4 $ , then the equation of the ellipse is

[AIEEE 2004]

Options:

A) $ 4x^{2}+3y^{2}=1 $

B) $ 3x^{2}+4y^{2}=12 $

C) $ 4x^{2}+3y^{2}=12 $

D) $ 3x^{2}+4y^{2}=1 $

Show Answer

Answer:

Correct Answer: B

Solution:

Since directrix is parallel to y-axis, hence axes of the ellipse are parallel to x-axis. Let the equation of the ellipse be $ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $ , $ (a>b) $

$ e^{2}=1-\frac{b^{2}}{a^{2}}\Rightarrow \frac{b^{2}}{a^{2}}=1-e^{2}=1-\frac{1}{4}\Rightarrow \frac{b^{2}}{a^{2}}=\frac{3}{4} $ . Also, one of the directrices is $ x=4 $

$ \Rightarrow $ $ \frac{a}{e}=4\Rightarrow a=4e=4.\frac{1}{2}=2 $ ; $ b^{2}=\frac{3}{4}a^{2}=\frac{3}{4}.4=3 $

$ \therefore $ Required ellipse is $ \frac{x^{2}}{4}+\frac{y^{2}}{3}=1 $ or $ 3x^{2}+4y^{2}=12 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें