Conic Sections Question 103

Question: An ellipse has eccentricity $ \frac{1}{2} $ and one focus at the point $ P( \frac{1}{2},\ 1 ) $ . Its one directrix is the common tangent nearer to the point P, to the circle $ x^{2}+y^{2}=1 $ and the hyperbola $ x^{2}-y^{2}=1 $ . The equation of the ellipse in the standard form, is

[IIT 1996]

Options:

A) $ \frac{{{(x-1/3)}^{2}}}{1/9}+\frac{{{(y-1)}^{2}}}{1/12}=1 $

B) $ \frac{{{(x-1/3)}^{2}}}{1/9}+\frac{{{(y+1)}^{2}}}{1/12}=1 $

C) $ \frac{{{(x-1/3)}^{2}}}{1/9}-\frac{{{(y-1)}^{2}}}{1/12}=1 $

D) $ \frac{{{(x-1/3)}^{2}}}{1/9}-\frac{{{(y+1)}^{2}}}{1/12}=1 $

Show Answer

Answer:

Correct Answer: A

Solution:

There are two common tangents to the circle $ x^{2}+y^{2}=1 $ and the hyperbola $ x^{2}-y^{2}=1. $ These are $ x=1 $ and $ x=-1 $

Out of these, $ x=1 $ is nearer to the point $ P(1/2,1) $ . Thus a directrix of the required ellipse is $ x=1. $

If $ Q(x,y) $ is any point on the ellipse, then its distance from the focus is $ QP=\sqrt{{{( x-\frac{1}{2} )}^{2}}+{{(y-1)}^{2}}} $ and its distance from the directrix $ x=1 $ is $ |x-1| $ . By definition of ellipse, $ QP=e|x-1| $

$ \Rightarrow \sqrt{{{( x-\frac{1}{2} )}^{2}}+{{(y-1)}^{2}}}=\frac{1}{2}|x-1| $

therefore $ 3x^{2}-2x+4y^{2}-8y+4=0 $ or $ \frac{{{( x-\frac{1}{3} )}^{2}}}{1/9}+\frac{{{(y-1)}^{2}}}{1/12}=1 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें