Conic Sections Question 104

Question: The equation of the tangent to the parabola $ y^{2}=9x $ which goes through the point (4, 10), is

[MP PET 2000]

Options:

A) $ x+4y+1=0 $

B) $ 9x+4y+4=0 $

C) $ x-4y+36=0 $

D) $ 9x-4y+4=0 $

Show Answer

Answer:

Correct Answer: C

Solution:

Given that $ y^{2}=9x $ . Here, $ a=\frac{9}{4} $ . Now, equation of tangent to the parabola $ y^{2}=9x $ is $ y=mx+\frac{9/4}{m} $

If this tangent goes through the point $ (4,10), $ then $ 10=4m+\frac{9}{4m} $
$ \Rightarrow (4m-9)(4m-1)=0 $
$ \Rightarrow m=\frac{9}{4},\frac{1}{4} $

Equation of tangents are, $ 4y=x+36 $

and $ y=-2x-k $

or $ x-4y+36=0 $ and $ 9x-4y+4=0 $ .