Conic Sections Question 105

Question: . Two perpendicular tangents to $ y^{2}=4ax $ always intersect on the line, if

[Karnataka CET 2000]

Options:

A) $ x=a $

B) $ x+a=0 $

C) $ x+2a=0 $

D) $ x+4a=0 $

Show Answer

Answer:

Correct Answer: B

Solution:

We know that tangent to the parabola at points $ t_1 $ and $ t_2 $ are $ t_1y=x+at_1^{2} $ and $ t_2y=x+at_2^{2}. $ Since tangents are perpendicular to the parabola, therefore, $ \frac{1}{t_1}.\frac{1}{t_2}=-1 $ or $ t_1t_2=-1 $ . We also know that their point of intersection $ =(at_1t_2,a(t_1+t_2)) $

$ =(-a,a(t_1+t_2)). $ Thus these points lie on directrix $ x=-a $ or $ x+a=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें