Conic Sections Question 106

Question: The equation of the common tangent touching the circle $ {{(x-3)}^{2}}+y^{2}=9 $ and the parabola $ y^{2}=4x $ above the x-axis, is

[IIT Screening 2001]

Options:

A) $ \sqrt{3}y=3x+1 $

B) $ \sqrt{3}y=-(x+3) $

C) $ \sqrt{3}y=x+3 $

D) $ \sqrt{3}y=-(3x+1) $

Show Answer

Answer:

Correct Answer: C

Solution:

Any tangent to $ y^{2}=4x $ is $ y=mx+\frac{1}{m}. $ It touches the circle, if $ 3=| \frac{3m+\frac{1}{m}}{\sqrt{1+m^{2}}} | $

or $ 9(1+m^{2})={{( 3m+\frac{1}{m} )}^{2}} $

or $ \frac{1}{m^{2}}=3 $ ,
$ \therefore m=\pm \frac{1}{\sqrt{3}}. $

For the common tangent to be above the x-axis, $ m=\frac{1}{\sqrt{3}} $

\Common tangent is, $ y=\frac{1}{\sqrt{3}}x+\sqrt{3} $

therefore $ \sqrt{3}y=x+3. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें