Conic Sections Question 108

Question: The tangent drawn at any point P to the parabola $ y^{2}=4ax $ meets the directrix at the point K, then the angle which KP subtends at its focus is

[RPET 1996, 2002]

Options:

A) 30o

B) 45o

C) 60o

D) 90o

Show Answer

Answer:

Correct Answer: D

Solution:

Here, $ P(at^{2},2at) $ and S(a, 0). If the tangent at P, $ ty=x+at^{2}, $ meets the directrix $ x=-aatk, $ then $ k=( -a,\frac{at^{2}-a}{t} ) $

$ m_1= $ slope of $ SP=\frac{2at}{a(t^{2}-1)} $

$ m_2= $ slope of $ SK=\frac{a(t^{2}-1)}{-2at} $

Clearly $ m_1m_2=-1 $ ,
$ \therefore \angle PSK=90^{o}. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें