Conic Sections Question 113

Question: If the eccentricity of the hyperbola $ x^{2}-y^{2}{{\sec }^{2}}\alpha =5 $ is $ \sqrt{3} $ times the eccentricity of the ellipse $ x^{2}{{\sec }^{2}}\alpha +y^{2}=25 $ , then a value of $ \alpha $ is

Options:

A) $ \pi /6 $

B) $ \pi /4 $

C) $ \pi /3 $

D) $ \pi /2 $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] For the hyperbola $ \frac{x^{2}}{5}-\frac{y^{2}}{5{{\cos }^{2}}\alpha }=1 $ We have $ e_1^{2}=1+\frac{b^{2}}{a^{2}}=1+\frac{5{{\cos }^{2}}\alpha }{5}=1+{{\cos }^{2}}\alpha $ For the ellipse $ \frac{x^{2}}{25{{\cos }^{2}}\alpha }+\frac{y^{2}}{25}=1 $ We have $ e_2^{2}=1-\frac{25{{\cos }^{2}}\alpha }{25}={{\sin }^{2}}\alpha $ Given that $ e_1=\sqrt{3}e_2 $
$ \therefore e_1^{2}=3e_2^{2} $ Or $ 1+{{\cos }^{2}}\alpha =3{{\sin }^{2}}\alpha $ Or $ 2=4{{\sin }^{2}}\alpha $ Or $ \sin \alpha =\frac{1}{\sqrt{2}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें