Conic Sections Question 115

Question: If The tangent to the parabola $ y^{2}=ax $ makes an angle of 45o with x-axis, then the point of contact is

[RPET 1985, 90, 2003]

Options:

A) $ ( \frac{a}{2},\ \frac{a}{2} ) $

B) $ ( \frac{a}{4},\ \frac{a}{4} ) $

C) $ ( \frac{a}{2},\ \frac{a}{4} ) $

D) $ ( \frac{a}{4},\ \frac{a}{2} ) $

Show Answer

Answer:

Correct Answer: D

Solution:

Parabola is $ y^{2}=ax $ i.e., $ y^{2}=4( \frac{a}{4} )x $ …..(i) $ \because $ Let point of contact is $ (x_1,y_1) $

Equation of tangent is $ y-y_1=\frac{2( \frac{a}{4} )}{y_1}(x-x_1) $

therefore $ y=\frac{a}{2y_1}(x)-\frac{ax_1}{2y_1}+y_1 $

Here, $ m=\frac{a}{2y_1}=\tan 45^{o} $
$ \Rightarrow $

$ \frac{a}{2y_1}=1 $

therefore $ y_1=\frac{a}{2} $

From (i), $ x_1=\frac{a}{4} $ . Point is $ ( \frac{a}{4},\frac{a}{2} ) $ .