Conic Sections Question 115

Question: If The tangent to the parabola $ y^{2}=ax $ makes an angle of 45o with x-axis, then the point of contact is

[RPET 1985, 90, 2003]

Options:

A) $ ( \frac{a}{2},\ \frac{a}{2} ) $

B) $ ( \frac{a}{4},\ \frac{a}{4} ) $

C) $ ( \frac{a}{2},\ \frac{a}{4} ) $

D) $ ( \frac{a}{4},\ \frac{a}{2} ) $

Show Answer

Answer:

Correct Answer: D

Solution:

Parabola is $ y^{2}=ax $ i.e., $ y^{2}=4( \frac{a}{4} )x $ …..(i) $ \because $ Let point of contact is $ (x_1,y_1) $

Equation of tangent is $ y-y_1=\frac{2( \frac{a}{4} )}{y_1}(x-x_1) $

therefore $ y=\frac{a}{2y_1}(x)-\frac{ax_1}{2y_1}+y_1 $

Here, $ m=\frac{a}{2y_1}=\tan 45^{o} $
$ \Rightarrow $

$ \frac{a}{2y_1}=1 $

therefore $ y_1=\frac{a}{2} $

From (i), $ x_1=\frac{a}{4} $ . Point is $ ( \frac{a}{4},\frac{a}{2} ) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें