Conic Sections Question 119

Question: If a circle cuts a rectangular hyperbola $ xy=c^{2} $ in A, B, C, D and the parameters of these four points be $ t_1,\ t_2,\ t_3 $ and $ t_4 $ respectively. Then

[Kurukshetra CEE 1998]

Options:

A) $ t_1t_2=t_3t_4 $

B) $ t_1t_2t_3t_4=1 $

C) $ t_1=t_2 $

D) $ t_3=t_4 $

Show Answer

Answer:

Correct Answer: B

Solution:

Let equation of circle is $ x^{2}+y^{2}=a^{2} $

Parametric form of $ xy=c^{2} $ are $ x=ct,y=\frac{c}{t} $

therefore $ c^{2}t^{2}+\frac{c^{2}}{t^{2}}=a^{2} $

therefore $ c^{2}t^{4}-a^{2}t^{2}+c^{2}=0 $

Product of roots will be, $ t_1t_2t_3t_4=\frac{c^{2}}{c^{2}}=1 $ .