Conic Sections Question 121

Question: The angle between the tangents drawn from the points (1,4) to the parabola $ y^{2}=4x $ is

[IIT Screening 2004]

Options:

A) $ \frac{\pi }{2} $

B) $ \frac{\pi }{3} $

C) $ \frac{\pi }{4} $

D) $ \frac{\pi }{6} $

Show Answer

Answer:

Correct Answer: B

Solution:

Any tangent to $ y^{2}=4x $ is $ y=mx+\frac{1}{m} $

Since it passes throguh (1, 4), we have $ 4=m+\frac{1}{m} $

$ \Rightarrow $ $ m^{2}-4m+1=0 $
$ \Rightarrow $ $ m_1+m_2=4 $ , $ m_1m_2=1 $

$ \Rightarrow $ $ |m_1-m_2|=2\sqrt{3} $

If $ \theta $ is the required angle, then $ \tan \theta =\frac{2\sqrt{3}}{1+1}=\sqrt{3} $

$ \Rightarrow $ $ \theta =\frac{\pi }{3} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें