Conic Sections Question 121

Question: The angle between the tangents drawn from the points (1,4) to the parabola $ y^{2}=4x $ is

[IIT Screening 2004]

Options:

A) $ \frac{\pi }{2} $

B) $ \frac{\pi }{3} $

C) $ \frac{\pi }{4} $

D) $ \frac{\pi }{6} $

Show Answer

Answer:

Correct Answer: B

Solution:

Any tangent to $ y^{2}=4x $ is $ y=mx+\frac{1}{m} $

Since it passes throguh (1, 4), we have $ 4=m+\frac{1}{m} $

$ \Rightarrow $ $ m^{2}-4m+1=0 $
$ \Rightarrow $ $ m_1+m_2=4 $ , $ m_1m_2=1 $

$ \Rightarrow $ $ |m_1-m_2|=2\sqrt{3} $

If $ \theta $ is the required angle, then $ \tan \theta =\frac{2\sqrt{3}}{1+1}=\sqrt{3} $

$ \Rightarrow $ $ \theta =\frac{\pi }{3} $ .