Conic Sections Question 131

Question: The equation of normal to the parabola at the point $ ( \frac{a}{m^{2}},\ \frac{2a}{m} ) $ ,is

[RPET 1987]

Options:

A) $ y=m^{2}x-2mx-am^{3} $

B) $ m^{3}y=m^{2}x-2am^{2}-a $

C) $ m^{3}y=2am^{2}-m^{2}x+a $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ y-\frac{2a}{m}=-\frac{2a/m}{2a}( x-\frac{a}{m^{2}} ) $

therefore $ y-\frac{2a}{m}=\frac{-1}{m}( x-\frac{a}{m^{2}} ) $

therefore $ m^{3}y+m^{2}x-2am^{2}-a=0 $ .