Conic Sections Question 134

Question: The locus of the midpoint of the line segment joining the focus to a moving point on the parabola $ y^{2}=4ax $ is another parabola with the directrix

[IIT Screening 2002]

Options:

A) $ x=-a $

B) $ x=-\frac{a}{2} $

C) $ x=0 $

D) $ x=\frac{a}{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \alpha =\frac{at^{2}+a}{2},\beta =\frac{2at+0}{2}\Rightarrow 2\alpha =at^{2}+a,at=\beta $

$ 2\alpha =a.\frac{{{\beta }^{2}}}{a^{2}}+a $ or $ 2a\alpha ={{\beta }^{2}}+a^{2} $

The locus is $ y^{2}=\frac{4a}{2}( x-\frac{a}{2} ) $

$ =4b(x-b),( b=\frac{a}{2} ) $

Directrix is $ (x-b)+b=0 $ or $ x=0 $ .