Conic Sections Question 134

Question: The locus of the midpoint of the line segment joining the focus to a moving point on the parabola $ y^{2}=4ax $ is another parabola with the directrix

[IIT Screening 2002]

Options:

A) $ x=-a $

B) $ x=-\frac{a}{2} $

C) $ x=0 $

D) $ x=\frac{a}{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \alpha =\frac{at^{2}+a}{2},\beta =\frac{2at+0}{2}\Rightarrow 2\alpha =at^{2}+a,at=\beta $

$ 2\alpha =a.\frac{{{\beta }^{2}}}{a^{2}}+a $ or $ 2a\alpha ={{\beta }^{2}}+a^{2} $

The locus is $ y^{2}=\frac{4a}{2}( x-\frac{a}{2} ) $

$ =4b(x-b),( b=\frac{a}{2} ) $

Directrix is $ (x-b)+b=0 $ or $ x=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें