Conic Sections Question 138

Question: The length of chord of contact of the tangents drawn from the point (2, 5) to the parabola $ y^{2}=8x $ , is

[MNR 1976]

Options:

A) $ \frac{1}{2}\sqrt{41} $

B) $ \sqrt{41} $

C) $ \frac{3}{2}\sqrt{41} $

D) $ 2\sqrt{41} $

Show Answer

Answer:

Correct Answer: C

Solution:

Equation of chord of contact of tangent drawn from a point $ ({x _{1,}}y_1) $ to parabola $ y^{2}=4ax $ is $ yy_1=2a(x+x_1) $ so that $ 5y=2\times 2(x+2) $

therefore $ 5y=4x+8. $ Point of intersection of chord of contact with parabola $ y^{2}=8x $ are $ ( \frac{1}{2},2 ),(8,8) $ , so that length $ =\frac{3}{2}\sqrt{41} $ .