Conic Sections Question 146

Question: The locus of a point P( $ \alpha $ , $ \beta $ )moving under the condition that the line $ y=\alpha x+\beta $ is a tangent to the hyperbola $ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 $ is

Options:

A) An ellipse

B) A circle

C) A parabola

D) A hyperbola

Show Answer

Answer:

Correct Answer: D

Solution:

[d] The tangent to the hyperbola $ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 $ is $ y=mx\pm \sqrt{a^{2}m^{2}-b^{2}} $ Given that $ y=\alpha x+\beta $ is a tangent of the hyperbola. So $ m=\alpha $ and $ a^{2}m^{2}-b^{2}={{\beta }^{2}} $
$ \therefore a^{2}{{\alpha }^{2}}-b^{2}={{\beta }^{2}} $ The locus is $ a^{2}x^{2}-y^{2}={b^{2,}} $ which is a hyperbola.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें