Conic Sections Question 147

Question: The value of m for which $ y=mx+6 $ is a tangent to the hyperbola $ \frac{x^{2}}{100}-\frac{y^{2}}{49}=1 $ , is

[Karnataka CET 1993]

Options:

A) $ \sqrt{\frac{17}{20}} $

B) $ \sqrt{\frac{20}{17}} $

C) $ \sqrt{\frac{3}{20}} $

D) $ \sqrt{\frac{20}{3}} $

Show Answer

Answer:

Correct Answer: A

Solution:

If $ y=mx+c $ touches $ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1, $

then $ c^{2}=a^{2}m^{2}-b^{2} $ . Here $ c=6,a^{2}=100,b^{2}=49 $

$ \therefore 36=100m^{2}-49\Rightarrow 100m^{2}=85\Rightarrow m=\sqrt{\frac{17}{20}} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें