Conic Sections Question 151

Question: Equation of any normal to the parabola $ y^{2}=4a(x-a) $ is

Options:

A) $ y=mx-2am-am^{3} $

B) $ y=m(x+a)-2am-am^{3} $

C) $ y=m(x-a)+\frac{a}{m} $

D) $ y=m(x-a)-2am-am^{3} $

Show Answer

Answer:

Correct Answer: D

Solution:

Let normal at $ (h,k) $ be $ y=mx+c $

then, $ k=mh+c $ also $ k^{2}=4a(h-a) $

slope of tangent at $ (h,k) $ is $ m_1 $ then on differentiating equation of parabola. $ 2ym_1=4a $

therefore $ m_1=\frac{2a}{k} $ also $ mm_1=-1 $

therefore $ m=-\frac{k}{2a}, $ solving and replacing $ h,k) $ by $ (x,y) $

therefore $ y=m(x-a)-2am-am^{3} $ .