Conic Sections Question 155

Question: The length of the normal chord to the parabola $ y^{2}=4x $ , which subtends right angle at the vertex is

[RPET 1999]

Options:

A) $ 6\sqrt{3} $

B) $ 3\sqrt{3} $

C) 2

D) 1

Show Answer

Answer:

Correct Answer: A

Solution:

Normal at $ P(t_1^{2},2t_1) $ on the parabola $ y^{2}=4x $ …..(i) Meets it again at the point $ (y-12)=\frac{-36}{54}(x+36)\Rightarrow 2x+3y+36=0 $ , where $ t_2=-t_1-\frac{2}{t_1} $ ……(ii) If $ PQ $ subtends a right angle at the vertex (0, 0) then (Slope of OP) (Slope of $ OQ) $

$ =-1 $

$ \Rightarrow $

$ \frac{2t_1}{t_1^{2}}.\frac{2t_2}{t_2^{2}}=-1 $
$ \Rightarrow $ $ t_2=-\frac{4}{t_1} $ ……(iii) From (ii) and (iii), $ -t_1-\frac{2}{t_1}=-\frac{4}{t_1} $
$ \Rightarrow $ $ -t_1=-\frac{2}{t_1} $

$ \Rightarrow t_1^{2} $ = 2
$ \Rightarrow t_1=\pm \sqrt{2} $ ;
$ \therefore t_2=\mp 2\sqrt{2} $

$ \therefore $ $ P $ and $ Q $ are $ (2,\pm 2\sqrt{2}) $ and $ (8,\mp 4\sqrt{2}) $

$ \therefore $ $ PQ=\sqrt{{{(8-2)}^{2}}+{{(\mp 4\sqrt{2}\mp 2\sqrt{2})}^{2}}}=\sqrt{36+72} $

$ =\sqrt{108}=6\sqrt{3.} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें