Conic Sections Question 156

Question: The equation of the tangents drawn at the ends of the major axis of the ellipse $ 9x^{2}+5y^{2}-30y=0 $ , are

[MP PET 1999]

Options:

A) $ y=\pm 3 $

B) $ x=\pm \sqrt{5} $

C) $ y=0,\ y=6 $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

Change the equation $ 9x^{2}+5y^{2}-30y=0 $ in standard form $ 9x^{2}+5(y^{2}-6y)=0 $

therefore $ 9x^{2}+5(y^{2}-6y+9)=45 $

therefore $ \frac{x^{2}}{5}+\frac{{{(y-3)}^{2}}}{9}=1 $

$ \because a^{2}<b^{2}, $ so axis of ellipse on y-axis. At y axis, put $ x=0 $ , so we can obtained vertex. Then $ 0+5y^{2}-30y=0 $

therefore $ y=0,y=6 $

Therefore, tangents of vertex $ y=0,y=6 $ .