Conic Sections Question 156

Question: The equation of the tangents drawn at the ends of the major axis of the ellipse $ 9x^{2}+5y^{2}-30y=0 $ , are

[MP PET 1999]

Options:

A) $ y=\pm 3 $

B) $ x=\pm \sqrt{5} $

C) $ y=0,\ y=6 $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

Change the equation $ 9x^{2}+5y^{2}-30y=0 $ in standard form $ 9x^{2}+5(y^{2}-6y)=0 $

therefore $ 9x^{2}+5(y^{2}-6y+9)=45 $

therefore $ \frac{x^{2}}{5}+\frac{{{(y-3)}^{2}}}{9}=1 $

$ \because a^{2}<b^{2}, $ so axis of ellipse on y-axis. At y axis, put $ x=0 $ , so we can obtained vertex. Then $ 0+5y^{2}-30y=0 $

therefore $ y=0,y=6 $

Therefore, tangents of vertex $ y=0,y=6 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें