Conic Sections Question 169

Question: An equilateral triangle is inscribed in the parabola $ y^{2}=4ax $ whose vertices are at the parabola, then the length of its side is equal to

Options:

A) 8a

B) $ 8a\sqrt{3} $

C) $ a\sqrt{2} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ L_1=\sqrt{3}y-x=0 $ , solving $ L_1 $

and $ S_1\equiv y^{2}-4ax=0 $

Then $ y=4a\sqrt{3} $ and $ x=12a $

Hence $ L=\sqrt{144a^{2}+48a^{2}} $

$ =a\sqrt{192}=8a\sqrt{3} $ .