Conic Sections Question 170

Question: The equation of the normal to the ellipse $ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $ at the point $ (a\cos \theta ,\ b\sin \theta ) $ is

Options:

A) $ \frac{ax}{\sin \theta }-\frac{by}{\cos \theta }=a^{2}-b^{2} $

B) $ \frac{ax}{\sin \theta }-\frac{by}{\cos \theta }=a^{2}+b^{2} $

C) $ \frac{ax}{\cos \theta }-\frac{by}{\sin \theta }=a^{2}-b^{2} $

D) $ \frac{ax}{\cos \theta }-\frac{by}{\sin \theta }=a^{2}+b^{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ ax\sec \theta -by\text{ cosec}\theta =a^{2}-b^{2} $ . (See theory for formula of tangent on ellipse at parametric point)