Conic Sections Question 170

Question: The equation of the normal to the ellipse $ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $ at the point $ (a\cos \theta ,\ b\sin \theta ) $ is

Options:

A) $ \frac{ax}{\sin \theta }-\frac{by}{\cos \theta }=a^{2}-b^{2} $

B) $ \frac{ax}{\sin \theta }-\frac{by}{\cos \theta }=a^{2}+b^{2} $

C) $ \frac{ax}{\cos \theta }-\frac{by}{\sin \theta }=a^{2}-b^{2} $

D) $ \frac{ax}{\cos \theta }-\frac{by}{\sin \theta }=a^{2}+b^{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ ax\sec \theta -by\text{ cosec}\theta =a^{2}-b^{2} $ . (See theory for formula of tangent on ellipse at parametric point)



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें