Conic Sections Question 179

Question: The line $ x\cos \alpha +y\sin \alpha =p $ will be a tangent to the conic $ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $ , if

[Roorkee 1978]

Options:

A) $ p^{2}=a^{2}{{\sin }^{2}}\alpha +b^{2}{{\cos }^{2}}\alpha $

B) $ p^{2}=a^{2}+b^{2} $

C) $ p^{2}=b^{2}{{\sin }^{2}}\alpha +a^{2}{{\cos }^{2}}\alpha $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ y=-x\cot \alpha +\frac{p}{\sin \alpha } $ is tangent to $ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, $ if $ \frac{p}{\sin \alpha }=\pm \sqrt{b^{2}+a^{2}{{\cot }^{2}}\alpha } $ or $ p^{2}=b^{2}{{\sin }^{2}}\alpha +a^{2}{{\cos }^{2}}\alpha $ .