Conic Sections Question 181

Question: Tangent to the parabola $ y=x^{2}+6 $ at (1, 7) touches the circle $ x^{2}+y^{2}+16x+12y+c=0 $ at the point

[IIT Screening 2005]

Options:

A) (-6, -9)

B) (-13, -9)

C) (-6, -7)

D) (13, 7)

Show Answer

Answer:

Correct Answer: C

Solution:

Equation of tangent at (1, 7) to $ y=x^{2}+6 $

$ \frac{1}{2}(y+7)=x.1+6 $

therefore $ y=2x+5 $ ……(i) This tangent also touches the circle $ x^{2}+y^{2}+16x+12y+c=0 $

…..(ii) Now solving (i) and (ii), we get

therefore $ x^{2}+{{(2x+5)}^{2}}+16x+12(2x+5)+c=0 $

therefore $ 5x^{2}+60x+85+c=0 $

Since, roots are equal so $ b^{2}-4ac=0 $

therefore $ {{(60)}^{2}}-4\times S\times (85+c)=0 $

therefore $ 85+c=180 $

therefore $ 5x^{2}+60x+180=0 $

therefore $ x=-\frac{60}{10}=-6 $

therefore $ y=-7 $

Hence, point of contact is (­-6, -7).