Conic Sections Question 181

Question: Tangent to the parabola $ y=x^{2}+6 $ at (1, 7) touches the circle $ x^{2}+y^{2}+16x+12y+c=0 $ at the point

[IIT Screening 2005]

Options:

A) (-6, -9)

B) (-13, -9)

C) (-6, -7)

D) (13, 7)

Show Answer

Answer:

Correct Answer: C

Solution:

Equation of tangent at (1, 7) to $ y=x^{2}+6 $

$ \frac{1}{2}(y+7)=x.1+6 $

therefore $ y=2x+5 $ ……(i) This tangent also touches the circle $ x^{2}+y^{2}+16x+12y+c=0 $

…..(ii) Now solving (i) and (ii), we get

therefore $ x^{2}+{{(2x+5)}^{2}}+16x+12(2x+5)+c=0 $

therefore $ 5x^{2}+60x+85+c=0 $

Since, roots are equal so $ b^{2}-4ac=0 $

therefore $ {{(60)}^{2}}-4\times S\times (85+c)=0 $

therefore $ 85+c=180 $

therefore $ 5x^{2}+60x+180=0 $

therefore $ x=-\frac{60}{10}=-6 $

therefore $ y=-7 $

Hence, point of contact is (­-6, -7).



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें